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Abstract

Many approaches to estimate velocity field (optical flow)
from sequential images have been proposed since the 70’s.
The major previous work can typically be divided into two
branches: gradient-based methods and correlation-based
methods (involving frequency-domain, template matching,
etc.). Here, we propose a new technique considering both of
the thoughts to realize a highly accurate estimation of slow
optical flow (all of velocities under1 pixel/frame). The
concept is to interpolate quadratic surfaces of brightness
intensity in the vicinity of each pixel on successive frames,
then under the rigidness assumption, the brightness and its
gradient distribution of a local region on each frame are
matched, the local velocity vector then can be calculated
with an iteration algorithm. Experimental result shows the
effectiveness of proposed method by using several synthetic
and real images.

1. Introduction

Optical flow computation, i.e., estimation of velocity
field from sequential images, is one of the most important
techniques in machine vision. For at least two decades of re-
search, there have been many ideas given to solve problems
of estimation accuracy or implementation efficiency. In this
paper, we concentrate on the former, with an expectation to
the amazing development of performance of computers.

Classic methods of optical flow computation can be
classified to two branches typically: gradient-based meth-
ods [8, 9, 10] and correlation-based methods [1, 5, 7]. The
former uses the relationship between temporal change and

spatial gradient of intensity of each pixel to derive veloc-
ity vector, therefore it is possible to obtain 100% density
optical flow of the entire image. As the measurements per-
form numerical differentiations, smoothness constraints to
temporal-spatial changes are needed, and the estimation ac-
curacy often becomes bad when noise occurs or the inten-
sity changes are extremely big or small (e.g. aperture prob-
lem). The later, correlation-based methods, except spatio-
temporal frequency correlation analysis, compare regions
of usually large extent in the successive images to find the
displacement between them. The defect of region-based
method’s qualities is that the density of estimation is not
sufficient, and usually displacement vectors at prominent
points or contour lines are estimated only.

To estimate the optical flow which is slower than
1.0 pixel/frame (p/f ), gradient-based methods are ad-
equate, but the techniques need to compute numerical
differentiation–an extremely unstable operation. Mean-
while, using some local time-space windows or patches,
e.g., linear filters [6], least-squares(LS) [2], quadtree
splines [11], instantaneous short range flow (subpixel mo-
tion) can be calculated efficiently. In this paper, we propose
a method which combines both the thoughts of gradient-
based class and region-based class, to estimate optical flow
with high accuracy and density, especially for the velocity
fields which are slower than1.0; p/f ). Our approach is to
consider the intensity distribution of a local small region
can be approximated by a quadratic surface, then accord-
ing to the rigidness assumption, the best matching can be
performed between the interpolated region in 2 or 3 frames.
The optical flow is computed by minimizing the matching
error if we consider the displacement of the regions as the
velocity values. Adopting spatial smoothness constraint, the
estimation accuracy of optical flow is improved efficiently,



and experimental result shows less estimation errors than
previous differential techniques.

2. Formulation

The purpose of this study is to detect a slow optical flow
in an apparent motion, which we define it as a low velocity
field where the entire displacements of images are under
1.0 p/f .

2.1. Interpolating quadratic surface

Let the brightness at a point (pixel)(x, y) on framet of
image sequence be denoted byIt(x, y), and the distribution
of the brightness begt(x, y), then to the central area of the
region,

It(x, y) ≈ gt(x, y). (1)

We considergt(x, y), the brightness distribution in the
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Figure 1. Interpolated regions: gt and gt+1 are
matched to calculate the object displacement
V (vx, vy) between successive images.

small region, can be represented by a quadratic surface

gt(x, y) = Atx
2 + Btxy + Cty

2 + Dtx + Ety + Ft, (2)

then the coefficientsAt, Bt, Ct, Dt, Et, Ft can be calcu-
lated by using the values of adjacent points ( pixels )
(Fig. 1). i.e.,

Minimize

1∑
x=−1

1∑
y=−1

[
It(x, y)− gt(x, y)

]2
. (3)

and the solution should be

At = 1
6 (It(−1,−1) + It(−1, 0) + It(−1, 1) + It(1,−1)
+It(1, 0) + It(1, 1)− 2It(0,−1)− 2It(0, 0)
−2It(0, 1))

Bt = 1
4 (It(−1,−1) + It(1, 1)− It(−1, 1)− It(1,−1))

Ct = 1
6 (It(−1,−1) + It(0,−1) + It(1,−1) + It(−1, 1)
+It(0, 1) + It(1, 1)− 2It(−1, 0)− 2It(0, 0)
−2It(1, 0))

Dt = 1
6 (It(1,−1) + It(1, 0) + It(1, 1)− It(−1,−1)
−It(−1, 0)− It(−1, 1))

Et = 1
6 (It(−1, 1) + It(0, 1) + It(1, 1)− It(−1,−1)
−It(0,−1)− It(1,−1))

Ft = 1
9 (5It(0, 0) + 2It(−1, 0) + 2It(1, 0) + 2It(0,−1)
+2It(0, 1)− It(−1,−1)− It(1,−1)− It(−1, 1)
−It(1, 1)).

(4)
The computation of the coefficients can be expressed by 6
operators shown in Appendix.

2.2. Computation of optical flow

Assuming that the brightness and the form of objects in
images do not change temporally,and the local flow velocity
is V (vx, vy) , we have

gt(x, y) = gt+∆(x + ∆vx, y + ∆vy), (5)

where∆ is the delay of time, can be unity to deal with the
low velocity field.

Then(vx, vy) can be derived by minimizing

H(vx, vy) =
∫ α

−α

∫ β

−β

[
gt+1(x+vx, y+vy)−gt(x, y)

]2
dxdy,

(6)
where0 < α, β < 1 ( 2 small squares ofgt andgt+1 in
Fig 1). In fact, we use Newton-Raphson iteration as

vk+1
x = vk

x −
HyyHx −HxyHy

HxxHyy −HxyHyx
, (7)

vk+1
y = vk

y −
HxxHy −HyxHx

HxxHyy −HxyHyx
, (8)

wherek is the step of iteration,Hx,Hy andHxx,Hxy,Hyy

are the first-order partial derivatives and second-order par-
tial derivatives ofH(vx, vy), respectively. These deriva-
tives are able to be derived from Eq. 2 and calculated ex-
plicitly by the intesities of 9 pixels. The local brightness
matching, Eq. 6, is similar to the approach of first-order
derivatives of Horn & Schunck [8], i.e.optical flow for-
mula ∂I(x,y,t)

∂x vx + ∂I(x,y,t)
∂y vy + ∂I(x,y,t)

∂t = 0. To consider
the spatio-temporal gradient of the quadratic surface, a high



order matching can be expressed by

H∗(vx, vy) = λ1H(vx, vy) + λ2

∫ α

−α

∫ β

−β[∂gt+1(x+vx,y+vy)
∂x − ∂gt(x,y)

∂x

]2
+

[∂gt+1(x+vx,y+vy)
∂y − ∂gt(x,y)

∂y

]2)dxdy,

(9)

whereH∗(vx, vy) is the total error of matching,λ1, λ2 >
0 is the regularization parameters(Only 1 parameter is
enough, in fact. Here we set up 2 for the convenience of
experiment statement). This matching of local brightness
gradient is similar to the thought of second-order deriva-
tives of Nagel [9, 10].

Furthermore, to avoid aperture-problem, the additional
constraint of velocity’s spatial smoothness can be adopted,
the matching error function Eq. 9 then is advanced to

H∗∗(vx, vy) = H∗(vx, vy) + λ2
3S(vx, vy). (10)

Here, parameterλ3 > 0,

S(vx, vy) =
(
v̄x − vx

)2 +
(
v̄y − vy

)2
, (11)

wherev̄x, v̄y is the average velocity of points nearbyvx, vy,
respectively.

3. Experiments

Synthetic and real images are used to compare pro-
posed technique with classic optical flow estimation meth-
ods. Because our method provides 100% density of flow,
the gradient-based methods (Horn & Schunck [8], Nagel [9,
10]) are compared in experiments. The experiment is
named asProposed 1when λ2 in Eq. 10 is zero, where
brightness matching and spatial smoothness constraint are
calculated [12]. The experiment is named asProposed 2
whenλ1, λ2, andλ3 > 0, that means brightness matching,
brightness gradient matching and spatial smoothness con-
straint are calculated [13]. To confirm the basic estimation
accuracy of these algorithms, noisy images are not consid-
ered here.

128x128,256 levels

Figure 2. A frame of synthetic patterns

3.1. Synthetic image

Fig. 2 shows a frame of synthetic image sequence.
The real value of the flow is(vx = 0.3 p/f, vy =
0.3 p/f, i.e., |V (vx, vy)| = 0.42 p/f) on all points in
the image. We applied Eq. 6 which using the constraint
of brightness only, to compute the velocity field of the im-
ages, and obtained a rough optical flow. Eq. 9 which adopts
gradient of intensities, gave a progress of estimation accu-
racy. Considering the spatial smoothness constraint of ve-
locity, i.e. Eq. 10, more accurately estimates are obtained
which average error is less than previous works ( Table 1).
Fig. 3(a) shows the estimated flow, where parameters are

(a) λ1, λ2, λ3 : 1.0, 1.0, 70.0

(b) λ1, λ2, λ3 : 1.0, 1.0, 70.0

Figure 3. Estimated velocities

λ1 = λ2 = 1.0, λ3 = 70.0, α = β = 0.5, in the case af-
ter 1000 iterations. Fig. 3(b) gives a visual judgment which



horizontal axis expresses distance from the point to the ori-
gin (0,0) ( on the top of up-left ), and vertical axis expresses
the velocity value of the point. In this simulation, all points
should be on a line where velocities are equal to0.42 p/f .

Mean of angular error[degree]

Regularization parameter

Figure 4. Comparison of average of estima-
tion error

Deviation of angular error[degree]

Regularization parameter

Figure 5. Comparison of standard deviation
of estimation error

Fig. 4 and Fig. 5 shows comparisons of estimation errors
( mean and deviation, respectively ), by classical gradient
methods and proposed method via the different values of
regularization parameters. Errors are measured by applying
the error analysis method of Barron [3], the angle between
the true and estimated motions expresses the error level. All
the estimation errors decreased when the values of regular-
ization parameters increased, but lower means of average
errors ( degree ) show the proposed method is more effec-
tive to the slow velocity field, i.e., under1.0 p/f ( Fig. 6).

Table 1 shows the estimation errors with optimum values
of parameters in experiment, proposed method approached
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Figure 6. Estimation errors via regularization
parameters

higher accuracy than classic gradient-based techniques (
About 50 ∼ 70% average, and−200 ∼ 60% standard de-
viation of degree errors are reduced ). We also tried some

Table 1. Error comparison
Param. value Ave. err.(◦) Std. dev.(◦)

Horn[8] 200 0.34 0.02
Nagel[10] 200, 10000 0.21 0.15
Proposed 1 1, 0, 90 0.22 0.13
Proposed 2 1, 1, 190 0.11 0.06

rotation flows, and the proposed method showed effective
either.

3.2. Real image

Fig. 7(a) gives a frame of a real image sequence,
recorded using a CCD camera, which moves to the right.
The slowest velocity is0.2; p/f approximately, where is the
wall at the rear of the vase. The high velocities are less than
0.5; p/f , where are the areas of vase and the front of the
floor. Fig. 8(a)∼(d) shows the estimated flows with dif-
ferent values of parameters. Fig. 8(a) is resulted by using
brightness matching only( Eq. 6). Fig. 8(b) used bright-
ness gradient matching only ( Eq. 9 withoutH(vx, vy), and
λ2 = 1). Fig. 8(c) was calculated by Eq. 9, without spa-
tial smoothness constraint (λ3 = 0). Fig. 8(d) shows the
result of estimation by Eq. 10, whereλ1 = 1.0, λ2 =
1.0, λ3 = 70.0(Proposed 2). The estimated data(Fig. 8(d))
are divided into 3 levels of low velocities, middle veloci-
ties and high velocities. Fig. 7(b) shows the levels in grey
intensity. Depth map transformed from estimated optical
flow, which can be applied to 3-D reconstruction of ob-



 

1.0,1.0,70.0)(λ1,λ2,λ3 =

(a) real image
(120 x 168, 2 frames,256 levels)

(b) result in 3 gray levels

(c) Estimated depth
1.0,1.0,70.0)(λ1,λ2,λ3 =

Figure 7. Real image and the estimation result

jects, are expressed by Fig. 7(c). To evaluate the accuracy
of estimation, we compared the standard deviation of ve-
locities on areas of wall, vase and floor ( 3 grey regions in
Fig. 7(b)). Our proposed method showed lower statistical
variance(3 ∼ 6%), which means higher estimation accu-
racy than those computed by the classic methods( see Fig. 9
and Table 2 ) .

Table 2. Standard deviation of velocities on 3
grey areas in Fig. 7(b)

Param. Value Wall Vase Floor
Horn[8] 100 0.032 0.016 0.048

Nagel[10] 100, 10000 0.058 0.017 0.043
Proposed 1 1, 0, 100 0.040 0.019 0.050
Proposed 2 1, 1, 190 0.031 0.015 0.045

4. Conclusion

According to the algorithm that minimize the difference
between a tamplate and an image, image alignment or im-
age registration have been implemented, and applied to op-
tical flow estimation by many researches [5, 11, 7]. In this
paper, we proposed a new technique of optical flow com-
putation by interpolated quadratic surface matching. First-
order derivatives ( matching of brightness ) and second-
order derivatives ( matching of brightness gradient ) were
consider in the technique. The proposed technique can es-
timate instantaneous dense optical flow only using 2 or 3

(a)  λ1,λ2,λ3:  1.0, 0.0, 0.0 λ1,λ2,λ3: 0.0, 1.0, 0.0(b)

(c) (d)λ1,λ2,λ3: 1.0, 1.0, 0.0 λ1,λ2,λ3: 1.0, 1.0, 70.0

Figure 8. Results with different values of pa-
rameters

Horn Schunck.:
(1981)
α=100.0

Nagel Enkelmann:
(1986)
α=100.0, δ=10000.0

Wu et al.:
(1998)
λ=100.0

Wu et al.: 
(1999)
λ1=1.0, λ2=1.0, λ3=190.0

Figure 9. Results of different methods



frames, especially, for sub-pixel motion. The experimental
comparison shows its high performance especially to esti-
mate slow velocity field under1.0 p/f , and the technique is
effective to real image sequence.

We used 9 ( 3 x 3 ) pixels to obtain the 6 parameters
of general quadratic surface function here, in fact, 6 pixel’s
data is enough. The remainders are expected be used to
deal with noise or discontinuities. And there are lots of
improvement ideas like hierarchical-estimation, repetition-
matching, multi-frame matching, noise elimination pro-
cess, regularization of parameters, etc., are considerable to
be adapted to this interpolated quadratic surface matching
method.
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Appendix

Fig.10 shows the coefficients of quadratic surface func-
tion, which are given by 3x3 operators according to Eq. 3 in
Chapter 2.
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quadratic surface function
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