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Abstract

Although a large number of researches have been
carried out into the analysis of nonlinear phenomena,
little is reported about using reinforcement learning,
which is widely used in artificial intelligent, intelligent
control, and other fields. Here, we consider the prob-
lem of chaotic time series using a self-organized fuzzy
neural network and reinforcement learning, in partic-
ular, a learning algorithm called Stochastic Gradient
Ascent(SGA). The proposed fuzzy neural network is
similar to a radial basis function network(RBFN), but
has self-organization ability dealing with its dynamical
inputs,and provides stochastic outputs. The outputs
are values of predicted time series, which called actions
in reinforcement learning. After feeding some training
data of chaotic time series to the initial frame of sys-
tem, the structure and synaptic weights will be orga-
nized, and the predictor begins to provide correct dy-
namics of time series. Applying our proposed method
to the Lorenz system, we obtained a high accuracy es-
timation of short-term prediction, and a reasonable re-
sult of long-term prediction.

1 Introduction

Studies on nonlinear phenomena in complex sys-
tems have been attracting many of researchers. De-
terministic chaos, especially, comes to be the most im-
portant part of these studies recently, and either the
basic theories or applications show us a large number
of successful results [1, 2, 3, 4, 5]. In this paper, we
would like to concern with the prediction of chaotic
time series, and propose a new neural network model
using reinforcement learning techniques.

It’s too difficult to model complex, irregular sig-
nals of chaos by traditional methods of nonlinear anal-
ysis because of the large quantities of parameters,
and its complexity of characteristics. So neural net-
work models, as a kind of soft-computing methods,
have been considered as effective nonlinear predic-

tors [2, 3, 4, 5]. Casdagli employed the radial basis
function(RBF) network in chaotic time series predic-
tion in early time [2]. Leung and Wang analyzed the
structure of hidden-layer in RBFN, and proposed a
technique called the cross-validated subspace method
to estimate the optimum number of hidden units, and
applied the method to prediction of noisy chaotic time
series [4]. Oliveira ,Vannucci and Silva suggested a
two-layered feedforward neural network, where the hy-
perbolic tangent activation function was chosen for all
hidden units, the linear function for the final output
unit, and obtained good results for the Lorenz system,
Henon and Logistic maps [3]. Such of neural network
models are not only developed on fundamental studies
of chaos, but also applied in many nonlinear predic-
tions, e.g., oceanic radar signals, financial time series,
etc [4, 5]. Kodogiannis and Lolis compared the perfor-
mance of some neural networks, i.e., Multi-layer per-
ceptron(MLP), RBFN, Autoregressive recurrent neu-
ral network(ARNN), etc., and fuzzy systems, used for
prediction of currency exchange rates, where RBFN
gave a high degree of accuracy [5].

Meanwhile, reinforcement learning, a kind of goal-
directed learning, is of great use for agent adapting
unknown environments [6, 7]. When the environment
belongs to Markov decision process(MDP), or Par-
tially observable Markov decision process(POMDP),
an agent acts some trial-and-error searches accord-
ing to certain policies, and receives reward which can
be considered as pleasure or pain of a living thing.
Through the interactions between the environment
and agent, both exploration and exploitation are car-
ried out, agent approaches to goal more and more ef-
fectively. Though this kind of machine learning has
been showing more and more contributions on arti-
ficial intelligence, optimal control theory and other
fields, however, no speculation has taken place con-
cerning the application in nonlinear prediction.

This paper attempts to predict chaotic time series

by an intelligent model which includes techniques of
self-organization, fuzzy inference, and stochastic pol-



icy of reinforcement learning. In Section 2, we propose
the architecture of prediction system and describe its
detail process. Section 3 presents the application of
proposed method on the Lorenz system, and results of
prediction. Finally, in Section 4, the conclusion of this
work will be reported.

2 Prediction System

To extract the complex behavior characteristics of
nonlinear signals, we employ a self-organized fuzzy
neural network(Fig. 1). It is a RBF-like neural net-
work because the membership functions are Gaussian
distributions with different values of parameters. Be-
cause the number of hidden units in RBFN, which
correspond to input patterns usually,is difficult to be
determined [4], we consider fuzzy rules (similar to the
model of Wang and Mendel [8]), and extend them to
a self-organized system. Due to the output of neu-
ral network including stochastic parameters, stochas-
tic gradient ascent(SGA) [7], is naturally served into
the learning of our predictor. In fact, there are some
hypothesize assert chaotic time series that we deal
with are not some of determining chaos but artifact
of stochastic process. We are not concerned here with
this philosophical argument, just use a stochastic pol-
icy to determinate actions of prediction in the proce-
dure of reinforcement learning.

2.1 Reconstructed Inputs

According to the Takens embedding theorem, the
inputs of prediction system on time ¢, can be con-
structed as a n dimensions vector space X (t), which
includes n observed points with same intervals on time
series y(t).

X(t) = (21(t),22(t), -, 2n(t)) (1)
= (@), yt=7),-yt—(n=-17) (2)

where 7 is time delay(interval of sampling), n is the
embedding dimension.

If we set up a suitable time delay and embedding
dimension, then a track which shows the dynamics of
time series will be observed in the reconstructed state
space X (t) when time step ¢ increases.

2.2 Self-organized Fuzzy Neural Network

Fig. 2 shows architecture of self-organized fuzzy
neural network we proposed. The initial number of
membership function and fuzzy rule is only 1, respec-
tively.

2.2.1 Membership Function

To each element x;(¢) of the input X(t), membership
function B;;(x;(t)) is represented as

(w;(t) —mij)? }
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B;j(x;(t) = emp{— (3)

where m;; and o;; are the parameters of mean and
standard deviation of the Gaussian membership func-
tion in jth node, respectively. Initially, 7 = 1, and
with increasing of input patterns, the membership
functions will be added.
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Figure 1: Architecture of prediction system

2.2.2 Fuzzy Inference
The fitness A\, (X (¢)) is an algebraic product of mem-
bership functions which connects to rule k.

n

M (X(1)) = H Bio(;) (4)

i=1

where o is the number of membership function, con-
nects with k. o € {1,2,---,1;}.

2.2.3 Self-organization of Neural Network

For a step s on the time series, we calculate every
membership function B;j(z;(s)), (1 = 1,2,---,n;j =
1,2,---,1;) of inputs z;(s), and let sth node that has
the largest value of B;j(x;(s)) connect to z;(s). In
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Figure 2: Self-organized fuzzy neural network

this case,the input z;(s) shares existing membership
function and fuzzy rule.

Otherwise, if each node j of membership function
has

Bij(zi(s)) < VF(F : Threshold) (5)

,then a node supplement is necessary, a new member-
ship will be added to correspond the input,l; < [; + 1.

To a new input set, if there is no any supplement of
membership functions, existing membership functions
connect with a same node of fuzzy rule, then supple-
ment of rule is not necessary. Meanwhile, if there is a
new membership function added, or if a disconnection
between all existing nodes of membership functions
with the node of fuzzy rule, then a node supplement
is necessary, i.e., a new fuzzy rule will be added to
correspond the node of membership function. So the
connections between membership functions and fuzzy
rules are multiple, and share/supplement operation is
controlled by thresholds.

2.2.4 Prediction Policy from Defuzzification

Integrate fuzzy rules with connection weight, fuzzy in-
ference can be obtained. The output of signal can be
considered as a new Gaussian distribution either, i.e.,

o) = ZkK=1 AWk
M(X(t)7 uk) — 272(:1 )\k (6)

K
P(X (1) i) = A Nk ™
Zk:l Ak
tonaru. where g is the mean of output,o is its standard
deviation. Weight w,,;andws}, are parameters concern-
ing with inputs set X (¢), and will be renew after learn-
ing. Thus, the output of neural network is according
to a stochastic contribution, which is a prediction be-
havior.

m(G(t+ 1), W, X (1)) = (9t +1) —M)2}

{0
5)

where §(t + 1) is the value of one-step ahead predic-
tion, produce by regular random numbers. W means
weights w,randwsr. This function causes actions so it
is called stochastic policy in reinforcement learning.

2.3 Reinforcement Learning of SGA

Reinforcement learning has recently been well-
known as a kind of intelligent machine learning [6, 7].
It needs not any model of operator but learns to ap-
proach to its gaol by observing sensing rewards from
environments. Kimura and Kobayashi suggested an al-
gorithm called stochastic gradient ascent(SGA), which
respect to continuous action. Considering the charac-
teristics of chaos, such as its orbital instability, bound-
edness, and self-similarity of attractor, it is appropri-
ate to serve this stochastic approximation method to
chaotic time series prediction system.

SGA algorithm is given under.

1. Accept an observation X (t) from environment.

2. Predict a future data §(t+ 1) under a probability
TGt + 1), W, X(2)).

3. Collate training samples of times series, take the
error as reward r;.

4. Calculate the degree of adaption e;(t), and its his-
tory for all elements w; of internal variable W.
where « is a discount(0 < v < 1).

(a3l + 1) WX®) )

ei(t) =
Di(t) = es(t) +yDi(t — 1) (10)

5. Caleulate Aw;(t) by under equation.
Awi(t) = (ri = b)Di(t) (11)

where b is a constant.



6. Improvement of policy:renew W by under equa-
tion.

AW(t) = (ALU1 (t)7 AWZ(t)v ) Awi(t)v o ) (12)
W — W +a(l—~)AW() (13)

where « is a learning constant,non-negative.

7. Advance time step ¢ to ¢ + 1,return to(1).
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Figure 3: The Lorenz chaos

3 Application

We applied the proposed prediction system on time
series of the Lorenz system to examine our method.
Observe the Lorenz time series till 1500 steps, use the
beginning 1000 steps to be training samples, then per-
form learning loops till prediction errors going to a
convergence. After the architecture of system becomes
stable, it is employed to predict data from 1001 step
to 1500 step.

3.1 The Lorenz System

The Lorenz system, which is leaded from convec-
tion analysis, is composed with ordinary differential
equations of 3 variableso(t), p(t), ¢(t). This paper uses
their discrete difference equations (Equ. 14, 15, 16),
and predicts the variable o(t)(Fig. 3).

o(t+1) =o(t) + At-o- (p(t) —o(t))  (14)
p(t+1) =p(t) — At(o(t) - q(t) —r-o(t) + p(t)) (15)

q(t+1) = q(t) + At(o(t) - p(t) = b-q(t))  (16)
here,we set At = 0.005,0 = 16.0,v = 45.92,b = 4.0.
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Figure 4: Numbers of membership functions and rules
in self-organized fuzzy neural network with differ-
ent input: (a)numbers of membership functions(fuzzy
sets) (b)numbers of fuzzy rules

3.2 Parameters of Experiment

Parameters in every part of prediction system are
reported here.

1. Reconstruction of input space by embed-
ding(Equ.(1),(2)):
Embedding dimension n : 3
Time delay 7: 1
(i.e.,in the case of input to be data of step 1,2,3,
then the data of step 4 will be predicted.)

2. Self-organized fuzzy neural network:
Initial value of weight wy;:mormal distribution
€(0,1)
Initial value of weight wy:0.5
Initial value of myj;,0;; in membership func-
tions:0.0,15.0
Threshold of criterion for supplementary or share
of membership functions and rules V/F : 0.99
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3. Reinforcement learning of SGA:
Reward from prediction error r; is

1
T = 1

Limitation of errorse:1.0
Discount~:0.9
Learning constant:

iflgt+1) —yt+ 1) <e
ifl[glt+1) —y(t+ 1) >¢

For weight w1, Qy,,;,:0.003

For weight wet, ay,, :3.0E-6

For mean and standard deviation
Mij, O1f,Qm, ;s Ao, :3.0E-6

3.3 Results of Experiment

Fig. 4 shows the numbers changing of nodes in-
cluding membership functions(Fig. 4(a)) and fuzzy
rules(Fig. 4(b)), respectively. As a consequence, the
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Figure 6: Results of prediction with different learning
times: (a)0 times (b)5000 times(c) 15000 times

number of membership functions are 22, the fuzzy
rules are H4.

Fig. 5 shows the values changing of parameters in
stochastic policy function w(§(t+1), W, X (¢)) (Equ. 8).
After about 11000 times learning,the learning of sys-
tem goes to a convergence. and the value of average
error(average of absolute value of each step’s predic-
tion error) of 1000 steps comes to near 1.451(the range
of time series values is about from -28.0 to 37). Fig. 6
demonstrates the change of prediction results with dif-
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ferent learning times.

We used this system to predict the data from 1001
step to 1500 step of Lorenz time series those are
not learned, obtained a good result with high accu-
racy(Fig. 7). Additionally, using the prediction values
as the inputs of system, i.e., executing predictor re-
gressively, we had a long-term prediction till 500 step,
and results suggest the strong ability of our proposed
system (Fig. 8).

4 Conclusion
We proposed an intelligent predictor in this paper,

and demonstrated reinforcement learning is of great
use to nonlinear phenomena analysis. This work also

shows that the methods of soft-computing, such as
neural networks and fuzzy techniques can be success-
fully used to predict the future state of nonlinear sys-
tems. The results of our experiment shows the pro-
posed method is effective in deterministic chaotic time
series prediction. The future work of this study will be
comparisons of the performance with other prediction
methods such as nonlinear modeling, RBFN, BP of
MLP and so on, and we would like to go on to develop
this system to treat noisy chaotic systems.
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